skip to main content


Search for: All records

Creators/Authors contains: "Yoo, Daehan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Open-channel microfluidics enables precise positioning and confinement of liquid volume to interface with tightly integrated optics, sensors, and circuit elements. Active actuation via electric fields can offer a reduced footprint compared to passive microfluidic ensembles and removes the burden of intricate mechanical assembly of enclosed systems. Typical systems actuate via manipulating surface wettability (i.e., electrowetting), which can render low-voltage but forfeits open-microchannel confinement. The dielectric polarization force is an alternative which can generate open liquid microchannels (sub-100 µm) but requires large operating voltages (50–200 VRMS) and low conductivity solutions. Here we show actuation of microchannels as narrow as 1 µm using voltages as low as 0.5 VRMSfor both deionized water and physiological buffer. This was achieved using resonant, nanoscale focusing of radio frequency power and an electrode geometry designed to abate surface tension. We demonstrate practical fluidic applications including open mixing, lateral-flow protein labeling, filtration, and viral transport for infrared biosensing—known to suffer strong absorption losses from enclosed channel material and water. This tube-free system is coupled with resonant wireless power transfer to remove all obstructing hardware — ideal for high-numerical-aperture microscopy. Wireless, smartphone-driven fluidics is presented to fully showcase the practical application of this technology.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    An acoustic plasmon mode in a graphene-dielectric-metal structure has recently been spotlighted as a superior platform for strong light-matter interaction. It originates from the coupling of graphene plasmon with its mirror image and exhibits the largest field confinement in the limit of a sub-nm-thick dielectric. Although recently detected in the far-field regime, optical near-fields of this mode are yet to be observed and characterized. Here, we demonstrate a direct optical probing of the plasmonic fields reflected by the edges of graphene via near-field scattering microscope, revealing a relatively small propagation loss of the mid-infrared acoustic plasmons in our devices that allows for their real-space mapping at ambient conditions even with unprotected, large-area graphene grown by chemical vapor deposition. We show an acoustic plasmon mode that is twice as confined and has 1.4 times higher figure of merit in terms of the normalized propagation length compared to the graphene surface plasmon under similar conditions. We also investigate the behavior of the acoustic graphene plasmons in a periodic array of gold nanoribbons. Our results highlight the promise of acoustic plasmons for graphene-based optoelectronics and sensing applications.

     
    more » « less
  4. With advances in nanofabrication techniques, extreme-scale nanophotonic devices with critical gap dimensions of just 1-2 nm have been realized. The plasmonic response in these extreme-scale gaps is significantly affected by nonlocal electrodynamics, quenching field enhancement and blue-shifting the resonance with respect to a purely local behavior. The extreme mismatch in lengthscales, ranging from millimeter-long wavelengths to atomic-scale charge distributions, poses a daunting computational challenge. In this paper, we perform computations of a single nanoslit using the hybridizable discontinuous Galerkin method to solve Maxwell’s equations augmented with the hydrodynamic model for the conduction-band electrons in noble metals. This method enables the efficient simulation of the slit while accounting for the nonlocal interactions between electrons and the incident light. We study the impact of gap width, film thickness and electron motion model on the plasmon resonances of the slit for two different frequency regimes: (1) terahertz frequencies, which lead to 1000-fold field amplitude enhancements that saturate as the gap shrinks; and (2) the near- and mid-infrared regime, where we show that narrow gaps and thick films cluster Fabry-Pérot (FP) resonances towards lower frequencies, derive a dispersion relation for the first FP resonance, in addition to observing that nonlocality boosts transmittance and reduces enhancement.

     
    more » « less
  5. Abstract

    With advances in nanofabrication techniques, extreme-scale nanophotonic devices with critical gap dimensions of just 1–2 nm have been realized. Plasmons in such ultranarrow gaps can exhibit nonlocal response, which was previously shown to limit the field enhancement and cause optical properties to deviate from the local description. Using atomic layer lithography, we create mid-infrared-resonant coaxial apertures with gap sizes as small as 1 nm and observe strong evidence of nonlocality, including spectral shifts and boosted transmittance of the cutoff epsilon-near-zero mode. Experiments are supported by full-wave 3-D nonlocal simulations performed with the hybridizable discontinuous Galerkin method. This numerical method captures atomic-scale variations of the electromagnetic fields while efficiently handling extreme-scale size mismatch. Combining atomic-layer-based fabrication techniques with fast and accurate numerical simulations provides practical routes to design and fabricate highly-efficient large-area mid-infrared sensors, antennas, and metasurfaces.

     
    more » « less
  6. Abstract

    Optical tweezers were developed in 1970 by Arthur Ashkin as a tool for the manipulation of micron‐sized particles. Ashkin's original design was then adapted for a variety of purposes, such as trapping and manipulation of biological materials[1]and the laser cooling of atoms.[2,3]More recent development has led to nano‐optical tweezers, for trapping particles on the scale of only a few nanometers, and holographic tweezers, which allow for dynamic control of multiple traps in real‐time. These alternatives to conventional optical tweezers have made it possible to trap single molecules and to perform a variety of studies on them. Presented here is a review of recent developments in nano‐optical tweezers and their current and future applications.

     
    more » « less